Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Biotechnol ; 386: 28-41, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461861

RESUMEN

Low production costs and a potential feedstock supply make lignocellulosic ethanol (bioethanol) an important source of advanced biofuels. The physical and chemical preparation of this kind of lignocellulosic feedstock led to a high ethanol yield. In order to increase the yield of fermentable sugars, pretreatment is an essential process step that alters the lignocellulosic structure and improves its accessibility for the expensive hydrolytic enzymes. In this context, the chemical composition of sugarcane trash (dry leaves, green leaves, and tops) and jatropha (shell and seed cake) was determined to be mainly cellulose, hemicellulose, and lignin. Hydrogen peroxide and sodium hydroxide were applied in an attempt to facilitate the solubilization of lignin and hemicelluloses in five agrowastes. The extraction of hydrogen peroxide was much better than that of sodium hydroxide. A comparative study was done using SEM, EDXA, and FTIR to evaluate the difference between the two methods. The pretreated wastes were subjected to saccharification by commercial cellulases (30 IU/g substrate). The obtained glucose was fortified with nutrients and fermented statically by Saccharomyces cerevisiae F-307 for bioethanol production. The results revealed the bioethanol yields were 325.4, 310.8, 282.9, 302.4 and 264.0 mg ethanol/g treated agrowastes from green leaves of sugarcane, jatropha deolied seed cake, tops sugarcane, dry leaves of sugarcane, and jatropha shell, respectively. This study emphasizes the value of lignocellulosic agricultural waste as a resource for the production of biofuels as well as the significance of the extraction process.


Asunto(s)
Jatropha , Saccharum , Lignina/metabolismo , Saccharum/química , Jatropha/metabolismo , Biocombustibles , Hidróxido de Sodio , Peróxido de Hidrógeno , Etanol , Saccharomyces cerevisiae/metabolismo , Hidrólisis , Fermentación
2.
Mol Biol Rep ; 49(3): 1903-1915, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34843039

RESUMEN

BACKGROUND: Thirteen Egyptian wheat cultivars were evaluated and characterized for adult plant resistance to yellow, leaf, and stem rusts. SSR markers linked to yellow, leaf and stem rust resistance genes were validated and subsequently used to identify wheat cultivars containing more than one rust resistance gene. RESULTS: Results of the molecular marker detection indicated that several genes, either alone or in different combinations, were present among the wheat cultivars, including Yr, Yr78 (stripe rust), Lr, Lr70 (leaf rust), Sr. Sr33, SrTA10187, Sr13, and Sr35 (stem rust), and Lr34/Yr18 and Lr49/Yr29 (leaf/stripe rust). The cultivar Sakha-95 was resistant to leaf and stem rusts, and partially resistant to stripe rust; however, this cultivar contained additional rust resistance genes (Lr, Sr and Lr/Yr). The area under the disease progress curve (AUDPC) type for the various wheat cultivars differed depending on the type of rust infection (yellow, leaf, or stem rust, indicated by Yr, Lr, and Sr). The cultivars Gem-12, Sids-14, Giza-171, and Giza-168 had AUDPC types of partial resistance and resistance. All six cultivars, however, contained additional rust resistance genes. CONCLUSIONS: Marker-assisted selection can be applied to improve wheat cultivars with efficient gene combinations that would directly support the development of durable resistance in Egypt. Once the expression of the resistance genes targeted in this study have been confirmed by phenotypic screening, the preferable cultivars can be used as donors by Egyptian wheat breeders. The results of this study will help breeders determine the extent of resistance under field conditions when breeding for rust resistance in bread wheat.


Asunto(s)
Basidiomycota , Triticum , Resistencia a la Enfermedad/genética , Egipto , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
3.
PLoS One ; 16(11): e0257959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34767570

RESUMEN

Wheat has a remarkable importance among cereals worldwide. Wheat stem and leaf rust constitute the main threats that destructively influence grain quality and yield production. Pursuing resistant cultivars and developing new genotypes including resistance genes is believed to be the most effective tool to overcome these challenges. This study is the first to use molecular markers to evaluate the genetic diversity of eighteen Egyptian wheat genotypes. Moreover, the molecular docking analysis was also used to assess the Cu-chitosan nanoparticle (CuChNp) treatment and its mode of action in disease control management. The tested genotypes were categorized into two main cluster groups depending on the similarity matrix, i.e the most resistant and susceptible genotypes to stem and leaf rust races. The results of SCoT primers revealed 140 polymorphic and 5 monomorphic bands with 97% polymorphism. While 121 polymorphic and 74 monomorphic bands were scored for SRAP primers (99% polymorphism). The genotypes Sakha 94, Sakha 95, Beni Sweif 4, Beni Sweif 7, Sohag 4 and Sohag 5 were resistant, while Giza 160 was highly susceptible to all stem rust races at the seedling stage. However, in the adult stage, the 18 genotypes were evaluated for stem and leaf rust-resistant in two different locations, i.e. Giza and Sids. In this investigation, for the first time, the activity of CuChNp was studied and shown to have the potential to inhibit stem and leaf rust in studied Egyptian wheat genotypes. The Spraying Cu-chitosan nanoparticles showed that the incubation and latent periods were increased in treated plants of the tested genotypes. Molecular modeling revealed their activity against the stem and leaf rust development. The SRAP and SCoT markers were highly useful tools for the classification of the tested wheat genotypes, although they displayed high similarities at the morphological stage. However, Cu-chitosan nanoparticles have a critical and effective role in stem and leaf rust disease control.


Asunto(s)
Antifúngicos/química , Quitosano/química , Cobre/química , Genotipo , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular/métodos , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Triticum/genética , Antifúngicos/farmacología , Resistencia a la Enfermedad/genética , Egipto , Marcadores Genéticos/genética , Tallos de la Planta/microbiología , Puccinia/efectos de los fármacos , Plantones/microbiología , Triticum/microbiología
4.
Plants (Basel) ; 10(7)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34371581

RESUMEN

Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity's food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.

5.
BMC Plant Biol ; 21(1): 42, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446120

RESUMEN

BACKGROUND: Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. RESULTS: In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. CONCLUSION: the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Puccinia/patogenicidad , Triticum/genética , Triticum/microbiología , Análisis de Varianza , Egipto , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Irán , Desequilibrio de Ligamiento , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
6.
Braz. j. microbiol ; 43(3): 1137-1146, July-Sept. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-656684

RESUMEN

Twenty seven bacterial isolates were isolated from superficial brown discolorations on the caps of cultivated Agaricus bisporus. After White Line Assay (WLA) and the assist of Biolog computer-identification system, isolates were divided into groups: (I) comprised ninteen bacterial isolates that positively responded to a Pseudomonas "reactans" reference strain (NCPPB1311) in WLA and were identified as Pseudomonas tolaasii, (II) comprised two isolates which were WLA+ towards the reference strain (JCM21583) of P. tolaasii and were proposed to be P. "reactans". The third group comprised six isolates, two of which weakly responded to the strain of P. tolaasii and were identified as P. gingeri whereas the other four were WLA- and identified as P. fluorescens (three isolates) and P. marginalis (one isolate). Isolates of P. tolaasii showed high aggressiveness compared with those of P. "reactans" in pathogenicity tests. Cubes of 1 cm³ of A. bisporus turned brown and decreased in size when were inoculated with 10 µl of P. tolaasii suspension containing 10(8) CFU ml-1, whereas a similar concentration of P. "reactans" caused only light browning. Fifty µl of the same concentration of P. tolaasii isolates gave typical brown blotch symptoms on fresh mushroom sporophores whereas the two P. "reactans" isolates caused superficial light discoloration only after inoculation with 100 µl of the same concentration. Mixture from both bacterial suspensions increased the brown areas formed on the pileus. This is the first pathogenicity report of P. tolasii and P. "reactans" isolated from cultivated A. bisporus in Egypt.


Asunto(s)
Humanos , Agaricales/aislamiento & purificación , Agaricus/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Pseudomonas fluorescens/aislamiento & purificación , Muestras de Alimentos , Métodos , Virulencia
7.
Braz J Microbiol ; 43(3): 1137-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24031938

RESUMEN

Twenty seven bacterial isolates were isolated from superficial brown discolorations on the caps of cultivated Agaricus bisporus. After White Line Assay (WLA) and the assist of Biolog computer-identification system, isolates were divided into groups: (I) comprised ninteen bacterial isolates that positively responded to a Pseudomonas "reactans" reference strain (NCPPB1311) in WLA and were identified as Pseudomonas tolaasii, (II) comprised two isolates which were WLA+ towards the reference strain (JCM21583) of P. tolaasii and were proposed to be P. "reactans". The third group comprised six isolates, two of which weakly responded to the strain of P. tolaasii and were identified as P. gingeri whereas the other four were WLA-and identified as P. fluorescens (three isolates) and P. marginalis (one isolate). Isolates of P. tolaasii showed high aggressiveness compared with those of P. "reactans" in pathogenicity tests. Cubes of 1 cm(3) of A. bisporus turned brown and decreased in size when were inoculated with 10 µl of P. tolaasii suspension containing 10(8) CFU ml(-1), whereas a similar concentration of P. "reactans" caused only light browning. Fifty µl of the same concentration of P. tolaasii isolates gave typical brown blotch symptoms on fresh mushroom sporophores whereas the two P. "reactans" isolates caused superficial light discoloration only after inoculation with 100 µl of the same concentration. Mixture from both bacterial suspensions increased the brown areas formed on the pileus. This is the first pathogenicity report of P. tolasii and P. "reactans" isolated from cultivated A. bisporus in Egypt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...